首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13704篇
  免费   2930篇
  国内免费   1518篇
化学   7677篇
晶体学   230篇
力学   1468篇
综合类   105篇
数学   481篇
物理学   8191篇
  2024年   12篇
  2023年   140篇
  2022年   314篇
  2021年   422篇
  2020年   638篇
  2019年   535篇
  2018年   541篇
  2017年   591篇
  2016年   705篇
  2015年   585篇
  2014年   793篇
  2013年   1135篇
  2012年   962篇
  2011年   1069篇
  2010年   903篇
  2009年   936篇
  2008年   884篇
  2007年   921篇
  2006年   847篇
  2005年   738篇
  2004年   721篇
  2003年   596篇
  2002年   553篇
  2001年   444篇
  2000年   382篇
  1999年   293篇
  1998年   224篇
  1997年   167篇
  1996年   174篇
  1995年   142篇
  1994年   123篇
  1993年   78篇
  1992年   84篇
  1991年   77篇
  1990年   59篇
  1989年   39篇
  1988年   46篇
  1987年   31篇
  1986年   35篇
  1985年   37篇
  1984年   34篇
  1983年   18篇
  1982年   32篇
  1981年   11篇
  1980年   14篇
  1979年   14篇
  1978年   13篇
  1976年   6篇
  1973年   9篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
Liquid-liquid-solid systems are becoming increasingly common in everyday life with many possible applications. Here, we focus on a special case of such liquid-liquid-solid systems, namely, capillary suspensions. These capillary suspensions originate from particles that form a network based on capillary forces and are typically composed of solids in a bulk liquid with an added secondary liquid. The structure of particle networks based on capillary bridges possesses unique properties compared with networks formed via other attractive interactions where these differences are inherently related to the properties of the capillary bridges, such as bridge breaking and coalescence between adjacent bridges. Thus, to tailor the mechanical properties of capillary suspensions to specific requirements, it is important to understand the influences on different length scales ranging from the dynamics of the bridges with varying external stimuli to the often heterogeneous network structure.  相似文献   
2.
In this study, manganese tellurite (MnTeO3) nanoparticles are developed as theranostic agents for magnetic resonance imaging (MRI)-guided photothermal therapy of tumor. MnTeO3 nanoparticles are synthesized via a simple one-step method. The as-synthesized MnTeO3 nanoparticles with uniform size show good biocompatibility. In particular, MnTeO3 nanoparticles exhibit a high photothermal conversion efficiency (η = 26.3%), which is higher than that of gold nanorods. Moreover, MnTeO3 nanoparticles also have high MRI performance. The longitudinal relaxivity (r1) value of MnTeO3 nanoparticles is determined to be 8.08 ± 0.2 mm −1 s−1, which is higher than that of clinically approved T1-contrast agents Gd-DTPA (4.49 ± 0.1 mm −1 s−1). The subsequent MnTeO3 nanoparticles-mediated photothermal therapy displays a highly efficient ablation of tumor cells both in vitro and in vivo with negligible toxicity. It is demonstrated that MnTeO3 nanoparticles can serve as promising theranostic agents with great potentials for MRI-guided photothermal therapy.  相似文献   
3.
本研究探讨3.0T磁共振成像(MRI)结合X线钼靶诊断乳腺恶性肿瘤的价值。采用回顾性研究方法,选取乳腺肿块患者110例162个病灶,给予3.0T MRI及X线钼靶检查。经病理确诊为恶性病变101个;恶性病灶形态不规则、边缘毛刺、时间-信号强度曲线(TIC)类型Ⅲ型和早期增强率≥60%比例明显高于良性病灶(P<0.05),而分叶状比例和表观扩散系数(ADC)值明显低于良性病变(P<0.05);恶性病变X线钼靶表现:形态不规则、钙化、结构不对称和大导管征比例明显高于良性病变(P<0.05);MRI联合X线钼靶诊断乳腺恶性病变的灵敏性、准确性和阴性预测值明显高于MRI诊断(P<0.05)。3.0T MRI检查结合X线钼靶诊断乳腺恶性肿瘤有较好的价值。  相似文献   
4.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
5.
Eight-coordinated DyIII centres with D6h symmetry are expected to act as high-performance single-molecule magnets (SMMs) due to the simultaneous fulfilment of magnetic axiality and a high coordination number (a requisite for air stability). But the experimental realization is challenging due to the requirement of six coordinating atoms in the equatorial plane of the hexagonal bipyramid; this is usually too crowded for the central DyIII ion. Here a hexaaza macrocyclic Schiff base ligand and finetuned axial alkoxide/phenol-type ligands are used to show that a family of hexagonal bipyramidal DyIII complexes can be isolated. Among them, three complexes possess nearly perfect D6h local symmetry. The highest effective magnetic reversal barrier is found at 1338(3) K and an open hysteresis temperature of 6 K at the field sweeping rate of 1.2 mT s−1; this represents a new record for D6h SMMs.  相似文献   
6.
Poly[9,9′‐dihexylfluorene‐2,7‐diyl)‐6,6″‐(2,2′:6′,2″‐terpyridine)] (LaPPS75) and its complexes with neodymium were synthesized and characterized. Magnetic measurements showed that the noncomplexed polymer presented a ferromagnetic contribution due to the formation of π stacking, and that in absence of those, the ferromagnetic behavior is suppressed. The pristine polymer, the complexed one and a low‐molecular‐weight model compound with the same structure of the complexed site in the parent polymer were studied. The observed behavior found is presented and discussed, the most important finding was that when a conjugated chain is used as a host for the metallic ion, an amplification of four times for the magnetization is achieved, using the same metallic content for complexed polymer and model compound for comparison. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 304–311  相似文献   
7.
Biomaterial scaffolds are the cornerstone to supporting 3D tissue growth. Optimized scaffold design is critical to successful regeneration, and this optimization requires accurate knowledge of the scaffold's interaction with living tissue in the dynamic in vivo milieu. Unfortunately, non‐invasive methods that can probe scaffolds in the intact living subject are largely underexplored, with imaging‐based assessment relying on either imaging cells seeded on the scaffold or imaging scaffolds that have been chemically altered. In this work, the authors develop a broadly applicable magnetic resonance imaging (MRI) method to image scaffolds directly. A positive‐contrast “bright” manganese porphyrin (MnP) agent for labeling scaffolds is used to achieve high sensitivity and specificity, and polydopamine, a biologically derived universal adhesive, is employed for adhering the MnP. The technique was optimized in vitro on a prototypic collagen gel, and in vivo assessment was performed in rats. The results demonstrate superior in vivo scaffold visualization and the potential for quantitative tracking of degradation over time. Designed with ease of synthesis in mind and general applicability for the continuing expansion of available biomaterials, the proposed method will allow tissue engineers to assess and fine‐tune the in vivo behavior of their scaffolds for optimal regeneration.  相似文献   
8.
偏心转子惯性力引起的底座运动受到地面摩擦的影响,与光滑情形的理论结果存在定性差异。转子逆时针匀速旋转的惯性力若小于构件总重,则底座随摩擦因子增加而出现连续、一次停顿和两次停顿的振动及完全静止的4种状态。因惯性力对正压力及摩擦力的影响,底座在连续及一次停顿的振动时右向位移较大;而底座跳起时如``蛤蟆夯'则整体向左移动。  相似文献   
9.
This study reports the structural and spectroscopic characterization of a novel metal organic compound formulated as [Fe (bpy)3] [Fe (dipic)2]2.7H2O ( 1 ) (dipic = pyridine‐2,6‐dicarboxylate and bpy = 2,2‐bipyridine). 1 was investigated by elemental analysis, FT‐IR spectroscopy, powder X‐ray diffraction and single crystal X‐ray diffraction (SC‐XRD), which revealed a triclinic structure of expected composition. Thermal degradation of 1 was also investigated. Complex 1 was used as a precursor to prepare superparamagnetic nanoparticles of Fe3O4 by thermal analysis. The obtained Fe3O4 was characterized by Fourier transformed infrared spectroscopy (FT‐IR), powder X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Fe3O4 nanoparticles were used as a nano‐adsorbent to remove Cd2+ from water at room temperature. The results showed that this nano‐adsorbent is effective in removing Cd2+ from contaminated water sources, and that the maximal effectivity of adsorption occurs at pH = 6. Magnetic measurements of complex 1 and Fe3O4 nanoparticles at room temperature revealed paramagnetic and superparamagnetic behavior, respectively.  相似文献   
10.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号